Предмет: Геометрия,
автор: selenamour
В треугольной пирамиде ABCD найдите угол между прямой CD и прямой, соединяющей середины ребер BC и AD, если в основании пирамиды лежит прямоугольный треугольник ABC с катетами AB=6, BC=8, а боковые ребра равны 13
Ответы
Автор ответа:
0
Если катеты равны AB=6 и BC=8, то гипотенуза АС = 10.
Так как боковые ребра равны 13, то вершина пирамиды проецируется в середину гипотенузы.
Поместим пирамиду в систему координат: В - начало, ВА по оси Ох, ВС по оси Оу.
Середина ВС это точка К, середина АД - точка М.
Высота Н пирамиды равна:
Н = √13² - 5²) = √(169 - 25) = 12.
Находим координаты концов заданных отрезков.
К(0; 4; 0), М(4,5; 2;6).
С(0; 8; 0), Д(3;4; 12).
Векторы: CD = √((xD-xC)²+(yD-yC)²+(zD-zC)²) = 3 -4 12 169 13
KM = √((xM-xK)²+(yM-yK)²+(zM-zK)²) = 4,5 -2 6 60,25 7,762087348 .
Скалярное произведение векторов равно:
13,5 8 72 Скал_про = 93,5
cos α = 93,5/(13*√60.25) = 0,9266 .
Угол равен 0,3855 радиан или 22,09 градусов.
Infalible:
https://znanija.com/task/35765155 - помогите пожалуйста 30 БАЛОВ"!!
Похожие вопросы
Предмет: Английский язык,
автор: sonyazhigareva
Предмет: Русский язык,
автор: Alexandra1706
Предмет: Другие предметы,
автор: Влад654245
Предмет: Физика,
автор: milashka0129
Предмет: История,
автор: erik58