Предмет: Геометрия,
автор: sasakostrubov413
Из точки S проведены две касательные к окружности, точки касания и А и В. Определи равные отрезки и
углы.
Ответы
Автор ответа:
0
Ответ:1. AO=BO как радиусы.
2. AC=BC как отрезки касательных, проведённых из одной точки.
3. BCO=ACO,так как центр окружности, вписанноц в угол, лежит на бесектрисе этого угла.
4. BOC=AOC.
Равенство этих углов следует из равенства треугольников BOC и AOC:
OA=OB как радиус OAC=OBC =90°, так как радиус, проведённый в точку касания, перпендикулярен касательной, OC -общая сторона, BOC=AOC по катеру и гипотезе .
5. OBC=OAC=90°,так как радиус, проведённыц в точку касания,перпеникулярен касательной.
Объяснение:
Похожие вопросы
Предмет: Русский язык,
автор: Crazy360
Предмет: Русский язык,
автор: NastyaSuper201
Предмет: Русский язык,
автор: vladPro100vlad
Предмет: Математика,
автор: ksenia349