Предмет: Алгебра, автор: magaramiz888

Помогите решить пример по линейной алгебре

Приложения:

Ответы

Автор ответа: SmEgDm
0

Пусть \varepsilon - канонический базис в \mathbb{R}^{3}.

Тогда матрицу перехода T_{e \rightarrow e'} можно найти следующим образом:

T_{e \rightarrow e'} = T_{e \rightarrow \varepsilon} \cdot T_{\varepsilon \rightarrow e'} = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Если записать блочную матрицу \left(\begin{array}{c|c}T_{\varepsilon \rightarrow e}&T_{\varepsilon \rightarrow e'}\end{array}\right) и привести путем элементарных преобразований к виду \left(\begin{array}{c|c}E&X\end{array}\right), то X = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Матрицу T_{\varepsilon \rightarrow e} легко получить: достаточно записать в столбцы координаты векторов базиса e. Аналогично с матрицей T_{\varepsilon \rightarrow e'}.

В итоге необходимо получить вид \left(\begin{array}{c|c}E&X\end{array}\right) следующей матрицы:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\2&2&-1&5&8&1\\3&-3&2&-1&9&2\end{array}\right)

Вычтем первую строку из второй и третьей:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\0&3&-2&0&1&0\\1&-2&1&-6&2&1\end{array}\right)

Вычтем из первой строки 2 третьих и поменяем их местами:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&3&-1&17&3&-1\end{array}\right)

Вычтем из третьей строки вторую:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&0&1&17&2&-1\end{array}\right)

Прибавим ко второй строке 2 третьих и вычтем из первой третью:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&3&0&34&5&-2\\0&0&1&17&2&-1\end{array}\right)

Делим вторую строку на 3:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

Прибавляем в первой строке 2 вторых:

\left(\begin{array}{ccc|ccc}1&0&0&{-\frac{1}{3}}&\frac{10}{3}&\frac{2}{3}\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

Ответ:

\frac{1}{3}\left(\begin{array}{ccc}-1&10&2\\34&5&-2\\51&6&-3\end{array}\right).

Похожие вопросы
Предмет: Русский язык, автор: igorp