Предмет: Геометрия, автор: NFSJ

Дано: ∆MNP, ∆FPN – прямоугольные, МР пересекает NF в точке К, MN = FP.Докажите: ∆NKP – равнобедренный. Запишите решение этой задачи в свою тетрадь (дано, найти, рисунок, подробное решение). Доказательство: Рассмотрим треугольники MNP и FPN. У них ___ =___ по условию, _____ – общая сторона, значит ∆ ____ = ∆_____ по признаку равенства прямоугольных треугольников, следовательно, ∠MPN = ∠ ________ , значит, ∆ ________ – равнобедренный (по признаку ). О какой общей стороне идёт речь в решении этой задачи? Для ввода ответа использовать заглавные буквы латинского алфавита.

Приложения:

Ответы

Автор ответа: orjabinina
22

Дано: ∆MNP, ∆FPN – прямоугольные, МР ∩ NF= К, MN = FP.

Докажите: ∆NKP – равнобедренный.

Доказательство:

Рассмотрим Δ MNP и ΔFPN . У них  MN = FP по условию, NP– общая сторона, значит Δ MNP = ΔFPN по признаку равенства прямоугольных треугольников, следовательно, ∠MPN = ∠FNР , значит, ∆ NKP – равнобедренный по признаку равнобедренного треугольника о равенстве углов при основании. Чтд.

О какой общей стороне идёт речь в решении этой задачи?-  NP– общая сторона, является катетом в прямоугольных треугольниках  ∆MNP и  ∆FPN .

Автор ответа: Аноним
4

решение смотрите во вложении

Приложения:
Похожие вопросы
Предмет: Українська мова, автор: lesyanedly