Предмет: Алгебра, автор: Vitaprod

Прошууу помогите дам 10 б
Найдите значение алгебраического выражения (12x^3-6x^2y):6x^2 x=5 y=-4


NickCantBeEmpty: Там 6 x в степени 2y или 6 х в степени 2, умноженные на у?
halilovaojisa: Ответ:

\frac{12x {}^{3} - 6x {}^{2}y }{6x {}^{2} } = \frac{6(2x {}^{3} - x {}^{2} y)}{6x {}^{2} } = \frac{2x {}^{3} - x {}^{2}y }{x {}^{2} }
6x
2

12x
3
−6x
2
y

=
6x
2

6(2x
3
−x
2
y)

=
x
2

2x
3
−x
2
y



\frac{2 \times 5 {}^{3} - 5 {}^{2} \times ( - 4) }{5 {}^{2} } = 14
5
2

2×5
3
−5
2
×(−4)

=14
valentinkarakin53: (12x^3-6x^2y)/6x^2=6x^2(2x-y)/6x^2=2x-y
2*5+4=14
madina2009mk: Ответ:

\frac{12x {}^{3} - 6x {}^{2}y }{6x {}^{2} } = \frac{6(2x {}^{3} - x {}^{2} y)}{6x {}^{2} } = \frac{2x {}^{3} - x {}^{2}y }{x {}^{2} }
6x
2

12x
3
−6x
2
y

=
6x
2

6(2x
3
−x
2
y)

=
x
2

2x
3
−x
2
y


\frac{2 \times 5 {}^{3} - 5 {}^{2} \times ( - 4) }{5 {}^{2} } = 14
5
2

2×5
3
−5
2
×(−4)

=14. Вот ответ
andrey1691: Лох

Ответы

Автор ответа: garmendia
5

Ответ:

 \frac{12x {}^{3} - 6x {}^{2}y  }{6x {}^{2} }  =  \frac{6(2x {}^{3}  - x {}^{2} y)}{6x {}^{2} } =  \frac{2x {}^{3}  - x {}^{2}y }{x {}^{2} }

 \frac{2 \times 5 {}^{3}  - 5 {}^{2} \times ( - 4) }{5 {}^{2} }  = 14

Автор ответа: Хуqожнuк
1

Ответ: 14

Объяснение:

Упростим исходное выражение:

\frac{12x^3-6x^2y}{6x^2}= \frac{6x^2(2x-y)}{6x^2}= 2x-y

При х = 5, у = -4, имеем:

2x-y=2\cdot5-(-4)=10+4=14


ulanat900: 6x
2

6(2x
3
−x
2
y)

=
x
2

2x
3
−x
2
y



\frac{2 \times 5 {}^{3} - 5 {}^{2} \times ( - 4) }{5 {}^{2} } = 14
Похожие вопросы
Предмет: Українська мова, автор: wizardwlad
Предмет: История, автор: Slavik140681