Предмет: Геометрия, автор: ahahahhavshs

Срочно, помогите пожалуйста, вот вопрос:

Докажите, что если центр вписанной окружности равнобедренного треугольника принадлежит высоте, то этот треугольник - равнобедренный.​

Ответы

Автор ответа: yayayarikrik
1

Ответ:

Центр вписанной окружности треугольника равноудален от его сторон и лежит на пересечении биссектрис. Если этот центр принадлежит и высоте треугольника, то следовательно треугольник, как минимум, равнобедренный, так как высота, проведенная к основанию равнобедренного треугольника и биссектриса угла, противоположного основанию, совпадают

Похожие вопросы