Предмет: Алгебра, автор: Jinfiniti

как решаются системы линейных уравнений с двумя переменными? и что это вообще такое?

вот пример, который нужно решить:
x+2y=15
5x-y=10

Ответы

Автор ответа: Senpoliya
0
 left { {{x+2y}=15 atop {5x-y=10}} right.

x = 15-2y
75-10y-y=10
-11y=-65
y=5 frac{10}{11}
x=15-2 * 5 frac{10}{11} = frac{35}{11} =3 frac{2}{11}
Автор ответа: aлина98
0
Суть системы в том что ты в первом( или во втором) уравнении одну переменную выражаешь через другу, и подставляешь это в другое уравнение:
с первого уравнения выразим х через у : х=15-2у, подставим это во второе выражение, то есть вместо х, 5(15-2у)-у=10.    Раскроем скобки:
 75-10у-у=10, -11у= -65, у= 65/11. Вместо у подставим в первоначальное выражение то число, которое получилось: х= 15-2*65/11, х=35/11. 

Похожие вопросы
Предмет: Физика, автор: aiyynakons