Сумма утроенного второго и четвёртого членов арифметической прогрессии равна 30. Вычисли, при каком значении разности прогрессии произведение третьего и пятого членов прогрессии будет наименьшим
Ответы
Ответ:
при d=-9
Объяснение:
3a₂+a₄=30
3(a₁+d)+a₁+3d=30
3a₁+3d+a₁+3d=30
4a₁+6d=30
4a₁=30-6d
a₁=7,5-1,5d
Найдем произведение третьего и пятого членов прогрессии:
a₃*a₅ = (a₁+2d)(a₁+4d)
a₃=7,5-1,5d+2d=7,5+0,5d
a₅=7,5-1,5d+4d=7,5+2,5d
a₃*a₅=(7,5+0,5d)(7,5+2,5d)= 56,25+3,75d+18,75d+1,25d²=
= 1,25d²+22,5d+56,25
Рассмотрим функцию f(d)=1,25d²+22,5d+56,25
Найдём производную полученной функции и критические точки:
f `(d)=(1,25d²+22,5d+56,25)` = 1,25*2d+22,5+0= 2,5d+22,5
f `(d)=0 при 2,5d+22,5=0
2,5d= -22,5
d= -9 - критическая точка
- +
__________ -9 _________
При переходе через критическую точку d=-9 функция меняет знак с "-" на "+", поэтому при d=-9 значение функции будет минимальным
Значит, при d=-9 произведение третьего и пятого членов прогрессии будет наименьшим.