Предмет: Алгебра, автор: shavkatovashax56

найдите значения выражения 2020-2019+ 2018-2017+2016-...+2-1​


jekadva: 1010

Ответы

Автор ответа: sangers1959
8

Ответ: S=1010.

Объяснение:

Представим данное вы ражение, как сумму двух арифметических прогрессий: (2020+2018+2016+...+2)+(-2019+(-2017)+(-2015)+...+(-1)).

1.

2020+2018+2016+...+2.

Sn=(a₁+an)*n/2

a₁=2020

d=a₂-a₁=2018-2020

d=-2.

an=a₁+(n-1)*d

2020+(n-1)*(-2)=2

2020-2n+2=2

2n=2020  |÷2

n=1010

S₁₀₁₀=(2020+2)*1010/2=2022*505.

2.

-2019+(-2017)+(-2015)+...+(-1)

a₁=-2019

d=-2017-(-2019)=-2017+2019=2

an=-2019+(n-1)*2=-1

-2019+2n-2=-1

2n=2020  |÷2

n=1010

S'₁₀₁₀=(-2019+(-1))*1010/2=-2020*505.

S=S₁₀₁₀+S'₁₀₁₀=2022*505+(-2020)*505=505*(2022-2020)=505*2=1010.

Похожие вопросы
Предмет: Другие предметы, автор: Andryleo
Предмет: Математика, автор: yik1
Предмет: Химия, автор: qwekdkxn