Предмет: Алгебра,
автор: nikita19102006
Докажите,что многочлен принимает неотрицательные значения при любых численных значениях входящих в него букв а)x^2+y^2-2xy+x-y+1
Доказательство:
б)x^4+2x^3+y^4-4y^3+x^2+4y^2
Доказательство:
(надо написать доказательства помогите пж)
Ответы
Автор ответа:
1
Ответ:
Объяснение:
a)x²+y²-2xy+x-y+1=(x²-2xy+y²)+(x-y)+1=(x-y)²+(x-y)+1=|заменим x-y=t|=t²+t+1
выделим полный квадрат
t²+t+1=t²+2·t·1/2+1/4-1/4+1=(t²+2·t·1/2+1/4)-1/4+1=(t+1/2)²+3/4=|сделаем обратную замену |=(x-y+1/2)²+3/4
(x-y+1/2)²≥0 и 3/4>0, значит, их сумма всегда будет больше 0, т.е. данный многочлен принимает неотрицательные значенич при любых знасениях x и y
б)x⁴+2x³+y⁴-4y³+x²+4y²=(x⁴+2x³+x²)+(y⁴-4y³+4y²)=x²(x²+2x+1)+y²(y²-4y+4)=
x²(x+1)²+y²(y-2)²
x²≥0 (x+1)²>0 значит, первое слагаемое х²(х+1)²≥0 всегда и не зависит от значений х
y²≥0 (y-2)²≥0 значит, второе слагаемое y²(y-2)²≥0 всегда и не зависит от значений y, поэтому сумма двух неотрицательных чисел всегда будет неотрицательна и не зависит от значений x и y
Похожие вопросы
Предмет: Русский язык,
автор: karinochkaa
Предмет: Русский язык,
автор: YOu74
Предмет: Русский язык,
автор: укучы
Предмет: Математика,
автор: Рада332