Предмет: Геометрия,
автор: VanyaVanek
65. По одну сторону от прямой а даны две точки А и В на расстояниях 10 м и 20 м от нее. Найдите расстояние от середины отрезка АВ до прямой а.
67. Основания трапеции относится как 2:3, а средняя линия равна 5 м. Найдите основания.
P. S. Распишите, пожалуйста, ПОДРОБНЕЙШИМ ОБРАЗОМ. ВСЕ расписанные кратко задачи будут отмечаться как нарушения.
Ответы
Автор ответа:
0
(10м+20м)/2=15м
(2с+3с)/2=5
5с=10
с=2
2с=4(м)
3с=6(м)
(2с+3с)/2=5
5с=10
с=2
2с=4(м)
3с=6(м)
Автор ответа:
0
65. Расстояние от середины отрезка АВ до прямой а является средней линией трапеции, боковыми сторонами которой являются отрезок АВ и отрезок прямой а,
а основаниями - отрезки перпендикуляров АС и ВД к прямой а, которые по условию задачи равны 10 м и 20 м. Поэтому искомое расстояние находим как среднюю линию трапеции:
L=(10+20):2=30:2=15 (м)
Ответ: 15 м
67. Пусть АД и ВС - основания трапеции АВСД и ВС<АД,
по условию ВС:АД=2:3, значит ВС=2х, АД=3х
также, по условию, средняя линия трапеции равна 5 м,
следовательно, (2х+3х):2=5
5х=5*2
5х=10
х=2
ВС=2х=2*2=4(м)
АД=3х=3*2=6(м)
Ответ: 4 м и 6 м
а основаниями - отрезки перпендикуляров АС и ВД к прямой а, которые по условию задачи равны 10 м и 20 м. Поэтому искомое расстояние находим как среднюю линию трапеции:
L=(10+20):2=30:2=15 (м)
Ответ: 15 м
67. Пусть АД и ВС - основания трапеции АВСД и ВС<АД,
по условию ВС:АД=2:3, значит ВС=2х, АД=3х
также, по условию, средняя линия трапеции равна 5 м,
следовательно, (2х+3х):2=5
5х=5*2
5х=10
х=2
ВС=2х=2*2=4(м)
АД=3х=3*2=6(м)
Ответ: 4 м и 6 м
Похожие вопросы
Предмет: Математика,
автор: sibirskaavika
Предмет: Музыка,
автор: tiumentsevdaniil
Предмет: Английский язык,
автор: Аноним
Предмет: Математика,
автор: ARron