Предмет: Геометрия,
автор: Mirack123
найти объем полученой в результате вращения кривой:
a) y=x², x=0, x=1 вркруг Ox
b) y²=4-x, x=0 вокруг Oy
можно с рисунком пожалуйста?
Ответы
Автор ответа:
2
Ответ:
Объяснение:
a) y=x² x=0 x=1 вокруг ОХ.
V=π*₀∫¹y²dx
V=π*₀∫¹(x²)²dx=π*₀∫¹x⁴dx=π*x⁵/5 ₀|¹=π*(1⁵/5-0⁵/5)=π*(1/5)=π/5.
Ответ: V≈0,63 куб ед.
b) y²=4-x x=0 вокруг ОУ.
x=4-y²
4-y²=0
y²=4
y₁=-2 y₂=2 ⇒
V=π*₋₂∫²(4-y²)²dy=π*₋₂∫²(16-8y²+y⁴)dy=π*(16y-8y³/3+y⁵/5) ₋₂|²=
=π+(16*2-8*2³/3+2⁵/5-(16*(-2)-8*(-2)³/3+(-2)⁵/5))=
=π*(32-(64/3)+(32/5)+32-(64/3)+(32/5))=π*(64-(128/3)+(64/5))=
=π*(64-42²/₃+12⁴/₅)=π*(21¹/₃+12⁴/₅)=π*((64/3)+(64/5))=π*64*((1/3)+(1/5))=
=π*64*(5+3)/15=π*64*8/15=512*π/15≈107,233.
Ответ: V=107,233 куб. ед.
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: julia15181310
Предмет: Українська мова,
автор: lyupinv
Предмет: Русский язык,
автор: AngelLoveYana
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: Алиса2608