Предмет: Геометрия,
автор: ereminalera
Даны точки а(1;-2) b(3;6) с(5;-2)
найдите координаты точки M, ДЕЛЯЩИЙ ПОПОЛАМ ОТРЕЗОК AB
Найдите длину отрезка CM
Является ли четырехугольник abcd параллелограмом, если d(7;6)
Ответы
Автор ответа:
0
Середину отрезка с заданными координатами начала и конца находят как
среднее арифметическое одноименных координат, то есть координаты точки М((3+1)/2;(-2+6)/2) или М(2;2).
Длина (модуль) CM=√[(Xm-Xc)²+(Ym-Yc)²] или
СМ=√[(2-5)²+(2+2)²]=√25=5.
Признак параллелограмма: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Сторона (вектор) АВ{Xb-Xa;Yb-Ya} или AB{3-1;6+2}.
AB{2;8} модуль (длина) |AB|=√(2²+8²)=√68.
Сторона (вектор) СD{Xd-Xc;Yd-Yc} или CD{7-5;6+2}.
CD{2;8} модуль (длина) |CD|=√(2²+8²)=√68.
Итак, противоположные стороны параллелограмма AB и CD равны по модулю и параллельны (два вектора параллельны, если отношения их координат равны, а у нас их отношение равно 1).
Следовательно, АВСD - параллелограмм, что и требовалось доказать.
Длина (модуль) CM=√[(Xm-Xc)²+(Ym-Yc)²] или
СМ=√[(2-5)²+(2+2)²]=√25=5.
Признак параллелограмма: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Сторона (вектор) АВ{Xb-Xa;Yb-Ya} или AB{3-1;6+2}.
AB{2;8} модуль (длина) |AB|=√(2²+8²)=√68.
Сторона (вектор) СD{Xd-Xc;Yd-Yc} или CD{7-5;6+2}.
CD{2;8} модуль (длина) |CD|=√(2²+8²)=√68.
Итак, противоположные стороны параллелограмма AB и CD равны по модулю и параллельны (два вектора параллельны, если отношения их координат равны, а у нас их отношение равно 1).
Следовательно, АВСD - параллелограмм, что и требовалось доказать.
Похожие вопросы
Предмет: Окружающий мир,
автор: Аноним
Предмет: Русский язык,
автор: ababalyan1985
Предмет: Алгебра,
автор: lizashalai2000
Предмет: Обществознание,
автор: ДжонатикNick