Предмет: Математика,
автор: Infalible
Вычислите площадь области D, заданную системой неравенств. Вычисления проведите в полярной системе координат.
Приложения:
Ответы
Автор ответа:
2
Даны две области:
ниже прямой y = (√3)x и внутри кривой x² + y² = 6x.
Прямая имеет угол наклона, тангенс которого равен √3, то есть(π/3).
Кривую x² + y² = 6x преобразуем с выделением полного квадрата.
(x² - 6x + 9) - 9 + y², получаем уравнение окружности (x - 3)² + y² = 3².
Искомая площадь - часть круга выше линии у = (√3)х.
В полярной системе координат уравнение вида r = dcos(φ) задаёт окружность диаметра d с центром в точке (d/2); 0).
У нас (d/2) равно 3, тогда в полярной системе координат уравнение заданной окружности примет вид r = 6cos(φ).
Заданная площадь лежит в плоскости круга между радиусами с φ = (πи/3) и (π/2).
Площадь равна интегралу:
Подставив r = 6cos(φ), находим S = (3π/2) - (9√3)/4 ≈ 0,8153.
Приложения:
Infalible:
Добрый день! Помогите прошу 200 балов!!!! https://znanija.com/task/34693360 https://znanija.com/task/34691881
Похожие вопросы
Предмет: Русский язык,
автор: Пантерра
Предмет: Русский язык,
автор: tah210200
Предмет: Русский язык,
автор: никоша
Предмет: Химия,
автор: Verena69