Решите пожайста!
2. В прямоугольной трапеции диагональ является биссектрисой острого угла. Найдите площадь трапеции, если боковые стороны равны 12 см и 13 см
Заранее огромное спасибо!
Ответы
В прямоугольной трапеции диагональ является биссектрисой острого угла. Найдите площадь трапеции, если боковые стороны равны 12 см и 13 см
https://znanija.com/task/34457611
* * * * * * * * * * * * * * * * * * * * * *
В прямоугольной трапеции диагональ является биссектрисой острого угла. Найдите площадь трапеции, если боковые стороны равны 12 см и 13 см .
------------- Пусть
Дано: AD || BC , AB⊥ AD , ∠CDB = ∠ADB , AB=12 см , СD=13 см .
S= S(ABCD) - ?
Ответ: 186 см² .
Объяснение: S =AB*(AD+BC) / 2
∠CDB = ∠ADB по условию и
∠DBC=∠ADB ( как накрест лежащие углы AD || BC, BС-секущая)
следовательно ∠CDB =∠DBC ⇒ BC =СD = 13 см .
Проведем высоту трапеции CH ⊥ AD. ABCH - прямоугольник ⇒
AH = BC =13 см и CH = AB =12 см .
Из треугольника CHD: HD =√(CD² -CH²) =√(13² -12²) =5 (см) .
AD =AH+HD =13 +5 =18 (см)
S =12*(18 +13)/2=6*31 =186 (см²)