Предмет: Геометрия,
автор: hafanya33
большая диагональ ромба равна 12√3 а один из углов равен 120 найти меньшую диагональ
Аноним:
Ответ: 12.
Ответы
Автор ответа:
0
Ответ:
12
Объяснение:
BD - наибольшая диагональ = 12√3.
<A = 120.
1) Посколько диагонали ромба одновременно перпедикулярны (т.е. создают 4 угла по 90°) и являются биссектрисами углов, то меньшая биссектриса AC разбивает <A на 60°.
Из треугольника ABO, нам известно, что <O = 90°. Не сложно найти тогда и <B:
°.
2) DB = 2OB, посколько диагонали ромба точкой сечения делятся пополам, т.е OB = 6√3
Из треугольника ABO найдём сторону AO, лично мне будет удобно использовать теорему синусов, кто-то может использовать тригонометрические соотношения углов, как вам удобно. Итак, имеем:
3) AC = 2AO, посколько диагонали ромба точкой сечения делятся пополам, т.е:
- значения наименьшей диагонали.
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: sharabhanov
Предмет: Геометрия,
автор: Forpeach
Предмет: Математика,
автор: zadonskayalera