Предмет: Математика, автор: 14555555666

Вычисление площадей фигур

Приложения:

Ответы

Автор ответа: nikebod313
4

Для того чтобы высчитать площадь фигуры неразрывной функции f(x) на некотором промежутке, следует воспользоваться формулой Ньютона — Лейбница:

\displaystyle \int\limits^a_b{f(x) } \, dx = F(x) \ \bigg|^{a}_{b} = F(a) - F(b)

Здесь a и b — границы фигуры на оси абсцисс, F(x) — первообразная для функции f(x)

1) \ S = \displaystyle \int\limits^4_1 {\dfrac{4}{x} } \, dx = 4\ln |x| \ \bigg|^{4}_{1} = 4\ln 4 - 4\ln 1 = 4\ln 4 квадратных единиц.

2) Здесь имеем площадь фигуры, ограниченной двумя функциями: y = x^{2} + 5 и y = x +3.

Чтобы найти данную площадь, нужно найти разность площадей каждой функции.

Очевидно, что площадь фигуры, образованной функцией y = x^{2} + 5 на отрезке [-2; \ 1] больше, чем площадь фигуры, образованной функцией y = x +3 на том же отрезке, поэтому

\ S = \displaystyle \int\limits^1_{-2} {(x^{2} + 5 - (x + 3))} \, dx = \int\limits^1_{-2} {(x^{2} - x + 2)} \, dx = \left(\dfrac{x^{3}}{3} - \dfrac{x^{2}}{2} + 2x \right) \bigg |^{1}_{-2} =

= \dfrac{1^{3}}{3} - \dfrac{1^{2}}{2} + 2 \cdot 1 - \left(\dfrac{(-2)^{3}}{3} - \dfrac{(-2)^{2}}{2} + 2 \cdot (-2) \right) = \dfrac{1}{3} - \dfrac{1}{2} + 2 + \dfrac{8}{3} + 2 + 4 = 10,5 квадратных единиц.

Похожие вопросы
Предмет: Другие предметы, автор: лизапетрова
Предмет: География, автор: Аноним