Предмет: Геометрия, автор: romagpocta

Даны две точки, лежащие в одной полуплоскости относительно данной прямой. Постройте треугольник, одна из сторон которого лежит на данной прямой, а центр описанной окружности и ортоцентр являются двумя данными точками.

Ответы

Автор ответа: WhatYouNeed
1

0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.

Вспомним два свойства ортоцентра:

1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника,  лежит на описанной около треугольника окружности.

2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально  противоположна вершине треугольника, противолежащей данной стороне.

1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.

По свойству ортоцентра (1.) H' лежит на описанной окружности.

2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.

3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.

4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.

5) Построим стороны AC и BC треугольника ABC. Задание выполнено.

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: 08062001
Предмет: Математика, автор: steffefkamango11