Предмет: Математика, автор: vuqarhasan1975

Даны три последовательных четных натуральных числа. Если от Куба второго числа вычесть их произведение, то получится 24.Найдите эти числа​

Ответы

Автор ответа: helenaal
11

Ответ:

4; 6; 8

Пошаговое объяснение:

  Так как по условию числа последовательные четные натуральные, то последующее отличается от предыдущего на 2.

   Для удобства вычислений обозначим за  Х среднее (второе) число, тогда первое (Х -2), а второе (Х + 2).

    По условию:

Х³ - Х*(Х - 2)*(Х + 2) = 24  

   Заменим по формуле сокращенного умножения произведение разности и суммы двух чисел на разность их квадратов:

Х³ - Х*(Х² - 4) = 24

Х³ - Х³ + 4Х = 24

Х = 24 : 4

Х = 6 --- второе число

Х - 2 = 6 - 2 = 4 ---- первое число

Х + 2 = 6 + 2 = 8 --- третье число

Ответ: 4, 6, 8

Проверка : 6³ - 4*6*8 = 216 - 192 = 24;   24 = 24


vuqarhasan1975: вообще-то там четные натуральные
helenaal: Спасибо, исправлю, Алгоритм тот же
Похожие вопросы