Предмет: Геометрия, автор: lipa04

В треугольнике ABC проведённые медианы AN и BK пересекаются в точке M. Определи площадь треугольника ABC, если площадь треугольника ABM равна 25 см2.

Приложения:

Ответы

Автор ответа: mrrr9658
2

Ответ:

66 см²

Объяснение:

Медианы треугольника пересекаются в одной точке, и  точкой пересечения делятся в отношении 2:1,  считая от вершины.

⇒  ВМ:МК=2:1.

У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой  ВК, содержащей стороны ВМ и МК этих треугольников.

Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты)   ⇒

Samk/Sabm=1/2   ⇒

11/Sabm=1/2 =>

22=Sabm.

Sabk=22см²+11см²=33см²

медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.

Sabc=33*2=66см²

Похожие вопросы
Предмет: Математика, автор: Аноним