Предмет: Геометрия,
автор: lubov7791
периметр осевого сечения конуса равен 24 см, угол развертки его боковой поверхности 120градусов. Вычислите площадь полной поверхности конуса
Ответы
Автор ответа:
12
Ответ: 36п
Объяснение:
∠φ = 360° * sinα
Используя данный нам ∠φ (угол развертки боковой поверхности) найдем sinα
120° = 360° * sinα
sinα = 1/3
Вернемся к нашему конусу. Рассмотрим треугольник BDC.
Р ▲BDC = 24 см
ВА=АD
СА = 2R
Р ▲BDC = 2l + 2R
24 = 2l + 2R / 2
12 = l + R
l = 12 - R
Перейдем к прямоугольному треугольнику АВС. ∠ВАС = 90°, АС - R.
АС = 12 - R
sinα = AC/CB = R/(12 - R)
R/(12 - R) = 1/3
3R = 12 - R
4R = 12
R = 3 (см)
l = 12 - 3 = 9 (см)
S(полн п-ти) = Sбок + Sосн
S(полн п-ти) = пR² + пRl
S = п3² + п * 3 * 9 = 9п + 27п = 36п
Приложения:
Похожие вопросы