ДАЮ 40 БАЛОВ
Сколько существует натуральных чисел, не превосходящих 1000
, которые не делятся ни на 2
, ни на 3
, ни на 5
?
Ответы
Ответ:
266
Объяснение:
Сначала посчитаем, сколько чисел делится только на 2, 3, 5:
2: 1000 / 2 = 500 (множество A);
3: [1000 / 3] = 333 (B);
5: 1000 / 5 = 200 (C);
Теперь найдем пересечения этих множеств:
A ∩ B (те числа, которые делятся и на 2 и на 3, то есть на 6) = 1000 / 6 = 166;
A ∩ C (на 2 и на 5, то есть на 10) = [1000 / 10] = 100;
B ∩ C (на 3 и на 5, то есть на 15) = [1000 / 15] = 66;
A ∩ B ∩ C = (и на 2, и на 3, и на 5, то есть на 30) = [1000 / 30] = 33;
Теперь, по формуле включений-исключений найдем:
A ∪ B ∪ C = | A | + | B | + | C | - | A ∩ B | - | B ∩ C | - | A ∩ C | + | A ∩ B ∩ C | = 500 + 333 + 200 - 166 - 100 - 66 + 33 = 734 (те числа, которые делятся либо на 2, либо на 3, либо на 5)
Теперь найдем те, которые ни на одного не делятся:
1000 - 734 = 266