Предмет: Геометрия, автор: takib95323

Найти площадь закрашенной фигуры

Приложения:

polkamolka71: а фото?
takib95323: Добавил.
serd2011: Относительно площади квадрата? Принимая значение стороны квадрата а ?
takib95323: Ld
takib95323: Да.

Ответы

Автор ответа: Andr1806
0

Ответ:

Sefgh =  (a²/3)·(π-3(√3-1) ед².

Объяснение:

Пусть АВСD - квадрат со стороной "а".

Площадь фигуры EFGH равна учетверенной площади фигуры OEF.

Площадь фигуры OEF равна сумме площадей прямоугольного треугольника OEF и сегмента EF окружности радиуса R = a (сторона квадрата) с центром в точке А и центральным углом ∠EAF = α.

В треугольнике АЕР по Пифагору: ЕР = √(а²-а²/4) = а√3/2. =>

EO = EP-OP = а√3/2 - a/2 = а(√3-1)/2.

В треугольнике OЕF по Пифагору:

ЕF = √(OE² + OF²) = √(2·(a(√3-1)/2)²) = a(√3-1)√2/2.

Площадь треугольника OEF равна Soef = (1/2)·OE·OF = a²(√3-1)²/8.

По теореме косинусов в треугольнике AEF найдем угол EAF = α.

Cosα = (a² + a² - EF²)/2a² = (2a² - (a(√3-1)√2/2)²)/2a² = 2a²(4 - 3 +2√3 - 1)/(4·2a²) = √3/2.

α = arccos(√3/2) = 30°.

Найдем площадь сегмента EF, отсекаемого от круга (А;R) хордой EF по формуле:

S = Sc - Saef, где Sc - площадь сектора AEF, а Saef - площадь треугольника AEF.

Площадь сектора AEF равна Sсек = π·R²·α/360 = π·а²/12.

Площадь треугольника AEF = (1/2)·а²·Sin30 = а²/4.  =>

Площадь сегмента EF = π·а²/12 - а²/4 = а²·(π-3)/12.

Площадь фигуры OEF = a²(√3-1)²/8 + а²·(π-3)/12.

Площадь заштрихованной фигуры

Sefgh = 4·(a²(√3-1)²/8 + а²·(π-3)/12) =>

Sefgh = (a²/6)·(3(√3-1)²+2(π-3))= (a²/6)·(3(√3-1)² + 2(π-3)). =>

Sefgh = (a²/3)·(3-3√3 + π).

Sefgh =  (a²/3)·(π-3(√3-1) ед².

Или так:

Площадь фигуры EFGH равна сумме площадей квадрата EFGH и четырех сегментов EF.

Площадь квадрата EFGH= (a(√3-1)√2/2)² = a²(2-√3)ед².

Площадь четырех сегментов EF: 4(а²·(π-3))/12 = а²·(π-3)/3.

Площадь закрашенной фигуры:

a²(2-√3)+а²·(π-3)/3 = (a²/3)·(3-3√3+π) = (a²/3)·(π-3(√3-1) ед².

Приложения:
Похожие вопросы
Предмет: Английский язык, автор: yulia3387