Предмет: Математика, автор: kirill20072120162016

Найдите наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019.

Ответы

Автор ответа: axatar
5

Ответ:

7981

Пошаговое объяснение:

Последнюю цифру неизвестного множителя обозначим через x. Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ********x

           *******9

         ********

          . . .

      ********        

   *********2019

Последней цифрой в произведении 9999·********x будет 9, если цифра x=1.

Теперь предпоследнюю цифру неизвестного множителя обозначим через y.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          *******y1

             9999

         ********

          . . .

      ********        

   *********2019

В сумме цифр 9+* в единичном разряде получится 1, тогда когда *=2. Но только в случае 9·8=72 в единичном разряде получится 2.  Отсюда y=8.

Теперь 3-ю цифру справа неизвестного множителя обозначим через z.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ****z81

            9999

        79992

      ********

          . . .

      ********        

   ********2019

В сумме цифр (так как  9+2=11, цифра 1 из десятичного разряде переходит следующий разряд) 9+9+1+*=19+* в единичном разряде получится 0, тогда когда *=1. Но только в случае 9·9=81 в единичном разряде получится 1.  Отсюда z=9.

Теперь 4-ю цифру справа неизвестного множителя обозначим через v.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ***t981

            9999

        79992

      89991

 **********

         . . .

***********        

   ********2019

В сумме цифр (так как  9+9+1+1=20, цифра 2 из десятичного разряде переходит следующий разряд) 9+9+9+2+*=29+* в единичном разряде получится 2, тогда когда *=3. Но только в случае 9·7=63 в единичном разряде получится 3.  Отсюда v=7.

Получили число, оканчивающееся на 2019 и поэтому процесс поиска можно останавливать!

Процесс умножения можно представит в виде:

           ₓ9999

            7981

            9999

        79992

      89991

   69993          

  ********2019

В силу этого заключаем, что наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019 - это 7981.


shikh5016: Всё правильно!
Похожие вопросы
Предмет: Математика, автор: artem7189
Предмет: Математика, автор: malinmary