Предмет: Алгебра, автор: KiraFilipova2005

Решите, пожалуйста, самостоятельную работу по алгебре. Точнее некоторые задания из этой работы.
Тема "Квадрат суммы и квадрат разности двух выражений. Квадрат суммы нескольких выражений"
1. Решите уравнение
(x–3)^2 – 2x^2 = 9 – (x+1)^2
2. Решите
(x^4 – 3) (x^4 + 3) – (x^4 – 5) ^2
Если x = 3
3. Решите
(3a + 2b)^2 (3a – 2b) ^2

Ответы

Автор ответа: axatar
0

Ответ:

Применим формулы сокращенного умножения:

а) (a + b)² = a² + 2·a·b + b²

б) (a - b)² = a² - 2·a·b + b²

в) (a + b)·(a - b) = a² - b²

1. (x–3)² – 2·x² = 9 – (x+1)²

x² – 6·x + 9 – 2·x² = 9 – (x² + 2·x + 1)

–6·x + 9 – x² – 9 = – x² – 2·x – 1

–6·x – x² + x² + 2·x = – 1

– 4·x = – 1

x = 1/4.

2. (x⁴ – 3)·(x⁴ + 3) – (x⁴ – 5)²  = x⁸ – 9 – (x⁸ – 10·x⁴ + 25)  =

= x⁸ – 9 – x⁸ + 10·x⁴ – 25  = 10·x⁴ – 34.

При x = 3

10·3⁴ – 34 = 10·81 – 34 = 810 – 34 = 776.

3. (3·a + 2·b)² · (3·a – 2·b)² = ((3·a + 2·b) · (3·a – 2·b))² =

= (9·a² – 4·b²)² = 81·a⁴ – 72·a²·b² + 16·b⁴.

Автор ответа: Санечка69
0

Нужно знать формулы сокращенного умножения:

(а ± b)² = а² ± 2аb + b² и (а – b)(а + b) = а² – b².

1. (x – 3)² – 2x² = 9 – (x + 1)²,

   х² – 6х + 9 – 2х² = 9 – х² – 2х – 1,

   –х² – 6х + 9 = –х² – 2х + 8,

  –х² – 6х + х² + 2х = 8 – 9,

  –4х = –1,

  х = 1/4 = 0,25.

2. (x⁴ – 3)(x⁴ + 3) – (x⁴ – 5)² = х⁸ – 9 – (х⁸ – 10х⁴ + 25) = х⁸ – 9 – х⁸ + 10х⁴ –

     – 25 = 10х⁴ – 34

     при х = 3   10х⁴ – 34 = 10 · 3⁴ – 34 = 10 · 81 - 34 = 810 – 34 = 776.

3. (3a + 2b)² · (3a – 2b)² = ((3a + 2b)(3a – 2b))² = (9а² – 4b²)² = 81а⁴ –

    – 72а²b² +  16b⁴.

Похожие вопросы
Предмет: Алгебра, автор: varsabicloud
Предмет: Математика, автор: Джек211