Предмет: Геометрия,
автор: ShadowVRN36
биссектрисы углов A и D параллелограмма ABCD пересекаются в точки M, лежащей на стороне BC. Найдите стороны параллелограмма если его периметр равен 36см.
скажите пожалуйста из какого пособия это взято..... очень надо
Ответы
Автор ответа:
0
Так как биссектрисы пересекаются под прямым углом, то следовательно треугольники ABM и MCD равнобедренные , если AB=x , то BC=2x, значит AD=2x
2(x+2x)=36
3x=18
x=6
BC=12
2(x+2x)=36
3x=18
x=6
BC=12
Автор ответа:
0
не знаю но решение простое
смотри угол АМВ = МАД за парелельностю и тоже самое с СМД
тогда треугольники АВМ и СМД равнобедреные
ну и как это паралелограм то допустим что АВ=а тогда ВС=2а и все
36/6=6=а
смотри угол АМВ = МАД за парелельностю и тоже самое с СМД
тогда треугольники АВМ и СМД равнобедреные
ну и как это паралелограм то допустим что АВ=а тогда ВС=2а и все
36/6=6=а
Похожие вопросы
Предмет: Физика,
автор: Аноним
Предмет: Қазақ тiлi,
автор: kubeevzhuatkan
Предмет: Математика,
автор: anastasiashashkova15
Предмет: Математика,
автор: маргоhbnf