Предмет: Алгебра,
автор: staskoloncev323
Найдите все простые числа p и q такие, что p + q = (p – q)³.
Пж срочно помогите!!!
Ответы
Автор ответа:
0
p и q - простые => p + q > 0 => (p – q)³ > 0 => p – q > 0 => ∀ (p;q) ∃ n∈N: p – q = n => p = q + n
q+n+q=n^3 => q=(n^3-n)/2 => q = (n-1)n(n+1)/2
Из трех подряд идущих натуральных чисел одно делится на 3 => (n-1)n(n+1) ⁞ 3. Т.к. НОД(2, 3)=1, то q = (n-1)n(n+1)/2 ⁞ 3. Т.к. q простое, то q=3.
(n-1)n(n+1)=6
n натуральное => (n-1)³<6=>n-1<∛6<∛8=2 => n<2+1=3
n=1 => (n-1)n(n+1)=0≠6
n=2 => (n-1)n(n+1)=1*2*3=6 - верно => p=3+2=5 - простое
Ответ: (5; 3)
Похожие вопросы
Предмет: Химия,
автор: mon15
Предмет: Русский язык,
автор: Аноним
Предмет: Химия,
автор: mon15
Предмет: Математика,
автор: polinkaa2017