Предмет: Геометрия,
автор: olzhekearystan
H - ортоцентр остроугольного треугольника ABC, точки D и E - основания высот, проведенных соответственно из вершин B и C. Окружность с диаметром DE пересекает стороны AB и AC еще раз соответственно в точках F и G. Отрезки FG и AH пересекаются в точке K. Если BC=25, BD=20 и BE=7, то найдите длину отрезка AK.
antonovm:
https://znanija.com/task/33627397
Ответы
Автор ответа:
10
Отрезок, соединяющий основания высот, отсекает подобный треугольник.
DAE~BAC
Коэффициент подобия AD/AB =cosA
F, G - основания высот в DAE (DFE, DGE опираются на диаметр DE)
FAG~DAE
Таким образом FAG~BAC, k=cosA^2
FG||BC (F=B) => AK - высота в FAG
cosA = -cos(B+C) = sinBsinC -cosBcosC =
24/25 *20/25 - 7/25 *15/25 =3/5
Но косинус угла С тоже равен 3/5, следовательно A=C.
Равнобедренный треугольник, высоты к боковым сторонам равны.
AM=CE =24
AK =cosA^2 *AM = 24*9/25 =8,64
Приложения:
AD/AB=AE/AC
DAE~BAC (по двум пропорциональным сторонам и углу между ними)
Отрезок, соединяющий основания высот, отсекает подобный треугольник.
Похожие вопросы
Предмет: Английский язык,
автор: ksk103
Предмет: Русский язык,
автор: salyaqas
Предмет: Английский язык,
автор: Amenable1
Предмет: Литература,
автор: GraceMartin2525
Предмет: Математика,
автор: мдмидрот