Предмет: Геометрия,
автор: migdal
Биссектритсы острых углов равнобокой трапеции пересекаются в точке, лежащей на меньшем основании трапеции,Большое основаниет рапеции равно 18 см,боковая сторона равна 4 см,найти среднюю линию трапеции.
Ответы
Автор ответа:
0
ABCD-равнобокая трапеция. АО и DO бисектрисы углов А и D соответственно и точка О лежит на основании ВС. Мы имеем два треугольника ВАО и DCO. Так как трапеция равнобокая, а АО и DO бисектрисы, то углы ВАО=DAO=ADO=CDO. и стороны АВ=CD по условию. Углы ВОА=DAO как накрестлежащие при параллельных AD и ВС и секущей АО. Получили, что у треуг АВО два равные угла ВАО=ВОА, значит он равнобедр. АВ=ВО=4см. Аналогично доказывается равнобедренность треуг. DCO, тогда ВС=4*2=8см. Средняя линия МК=(18+8)/2=13см.
Похожие вопросы
Предмет: География,
автор: msmirnova383
Предмет: Немецкий язык,
автор: Polina8850
Предмет: Химия,
автор: vladbalzhyk
Предмет: Математика,
автор: knyaz