Предмет: Алгебра,
автор: Athene
Квадратный трёхчлен f(x) имеет два различных корня .Оказалось ,что для любых чисел a иb верно неравенство f(a² + b²) больше или равно f(2ab).Докажите ,что хотябы один из корней этого трёхчлена отрицательный
Ответы
Автор ответа:
1
Объяснение:
пусть этот трехчлен можно представить как
тогда получаем неравенство:
так как неравенство должно выполняться при любых a и b, то k > 0 и m>0
по теореме Виета:
подставляем в неравенство:
что бы равенство выполнялось при любых a и b, сумма корней должна быть меньше или равна 0, а так как корни различны и не могут быть оба равны нулю, нужно что бы хотя бы один из корней был меньше 0
Похожие вопросы
Предмет: История,
автор: atcabarovaajkyz
Предмет: Математика,
автор: mariasimiz
Предмет: Геометрия,
автор: dorkass
Предмет: Алгебра,
автор: вика2146
Предмет: Математика,
автор: Ангелина4111