ПОМОГИТЕ СРОЧНО!!!
1) Дано: АО=OB, MO=ON, MO=4см, АО=2см, АМ=5,5см
найти: PBON.
2) В равнобедренном треугольнике АВС точки F и E являются стороной AB и BC, соответственно. BD биссектриса АВС. Доказать что АFD=CED
3) Даны неразвернутый угол и отрезок. На сторонах данного угла построить точки, удаленные от вершины угла на расстояние, равное 2,5 см данного отрезка
Ответы
Ответ:
1. Пусть х - коэффициент пропорциональности, тогда
основание - 2х, боковая сторона 3х.
Так как периметр равен 56, получаем уравнение:
2х + 3х + 3х = 56
8х = 56
х = 7
основание - 14
боковая сторона - 21
2. а) Данный отрезок надо сначала разделить на 4 части.
Пусть дан отрезок АС (см. рис.1).
Проведем две окружности одинакового произвольного радиуса (большего половины отрезка АС) с центрами в точках А и С.
Через точки пересечения окружностей проведем прямую. точка пересечения этой прямой с отрезком (точка О) - середина отрезка АС.
Затем надо разделить пополам отрезок АО.
б) Радиусом, равным половине АО, с центром в вершине данного угла надо построить окружность. Точки, лежащие на этой окружности, и есть точки, удаленные от вершины угла на четверть данного отрезка.
3. а) ВМ = ВК по условию,
∠МВР = ∠КВР так как высота равнобедренного треугольника, проведенная к основанию, является и биссектрисой,
ВР - общая сторона для треугольников МВР и КВР, ⇒
ΔМВР = ΔКВР по двум сторонам и углу между ними.
В равных треугольниках напротив равных сторон лежат равные углы, значит
∠ВМР = ∠ВКР.
б) Из равнства треугольников МВР и КВР следует так же, что РМ = РК, а значит в равнобедренном треугольнике РМК равны углы при основании, т.е. ∠РМК = ∠РКМ.
Подробнее - на Znanija.com - https://znanija.com/task/1592474#readmore
Объяснение: