Предмет: Математика, автор: snakepaker

множество значений функции f(x)=-x'4 -8X²+17.

Ответы

Автор ответа: axatar
2

Ответ:

E(f(x))=(-∞; 17]

Пошаговое объяснение:

f(x)= -x⁴-8·x²+17 = 17-(x⁴+8·x²)=17-(x⁴+2·4·x²+4²-4²)=17+4²-(x⁴+2·4·x²+4²)=

=17+16-(x²+4)²=33-(x²+4)²

Так как x²+4≥4, то (x²+4)²≥4²=16 и поэтому

33-(x²+4)² ≤ 33 - 16 = 17

Отсюда, наибольшее значение функции f(x)= -x⁴-8·x²+17 равно 17.

Так как x --> ±∞ выражение 33-(x²+4)² --> -∞, то множеством значений E(f(x)) функции f(x)= -x⁴-8·x²+17 будет (-∞; 17].

Похожие вопросы
Предмет: Алгебра, автор: emelancikmasa
Предмет: Математика, автор: wwwvlasov