Ответы
Дано кубическое уравнение 4x^3 - 4x^2 + 7x - 2 = 0.
Для вычисления корней данного кубического уравнения используются формулы Кардано.
Исходное уравнение приводится к виду: y^3 + py + q = 0.
Здесь применяются следующие формулы:
p=-b^2/(3a^2 )+c/a, q=(2b^3)/(27a^3 )-bc/(3a^2 )+d/a.
где
a - коэффициент при x^3,
b - коэффициент при x^2,
c - коэффициент при x,
d - свободный член.
Подставим наши значения в данные формулы, мы получим:
p = 1,416666667, q = 0,009259259 .
Потом, использовав формулу: Q = (p/3)³ + (q/2)², вычислим количество корней кубического уравнения. Если:
Q > 0 — один вещественный корень и два сопряженных комплексных корня;
Q < 0 — три вещественных корня;
Q = 0 — один однократный вещественный корень и один двукратный, или, если p = q = 0, то один трехкратный вещественный корень.
В нашем случае Q = 0,105324074 , будем иметь один вещественный корень и два сопряженных комплексных корня.
А сами корни найдём по следующим формулам:
x1 = α + β − (b/3a);
x2,3 = −((α+β)/2) − (b/3a) ± i((α−β)/2)√3;
где α = (−(q/2) + √Q)^(1/3), β = (−(q/2) − √Q)^(1/3).
Подставив наши значения в выше указанные формулы вычислим что:
α = 0,683924166, β = -0,690459916 .
x1 = 0,326797583 ; это вещественный корень.
x2,3 = 0,3366 ± i · 1,1903.