Предмет: Математика,
автор: asvatolina98
Исследовать ряд на сходимость
Приложения:
Ответы
Автор ответа:
1
Ответ: ряд сходится.
Пошаговое объяснение:
Благодаря наличию множителя (-1)^n данный ряд является знакочередующимся. Модуль его n-го члена /an/=1/[8*n*ln(n)], а модуль его n+1 - го члена /an+1/=1/[8*(n+1)*ln(n+1)]. Так как при любом значении n /an+1/:/an/=n*ln(n)/[(n+1)*ln(n+1)]<1, то члены данного ряда монотонно убывают по модулю. А так как при этом, очевидно, an⇒0 при n⇒∞, то отсюда - по признаку Лейбница - ряд сходится.
Автор ответа:
1
Ответ:
ряд сходится условно.
Пошаговое объяснение:
детали во вложении.
Приложения:
Похожие вопросы
Предмет: Литература,
автор: vladkashokoladkab
Предмет: Право,
автор: fludnastia
Предмет: Физика,
автор: sheralievamalika2021
Предмет: Математика,
автор: Единорог236