можно с решением тогда
Ответы
Ответ: Объяснение:
1.
60₁₀ = 0*2⁰ + 0*2¹ + 1*2² + 1*2³ + 1*2⁴ + 1*2⁵ = 111100₂
2. 3C₁₆ < 1000011₂ < 143₈ < 100₁₀
3C₁₆ = C*16⁰ + 3*16¹ = 60₁₀
143₈ = 3*8⁰ + 4*8¹ + 1*8² = 99₁₀
1000011₂ = 1*2⁰ + 1*2¹ + 0*2² + 0*2³ + 0*2⁴ + 0*2⁵ + 1*2⁶ = 67₁₀
3.
10101011₂ = 1*2⁰ + 1*2¹ + 0*2² + 1*2³ + 0*2⁴ + 1*2⁵ + 0*2⁶ + 1*2⁷ = 171₁₀
4.
100011₂ - 1010₂ = 11001₂
100011₂ = 1*2⁰ + 1*2¹ + 0*2² + 0*2³ + 0*2⁴ + 1*2⁵ = 35₁₀
1010₂ = 0*2⁰ + 1*2¹ + 0*2² + 1*2³ = 10₁₀
25₁₀ = 1*2⁰ + 0*2¹ + 0*2² + 1*2³ + 1*2⁴ = 11001₂
10111₂ + 101₂ = 11100₂
10111₂ = 1*2⁰ + 1*2¹ + 1*2² + 0*2³ + 1*2⁴ = 23₁₀
101₂ = 1*2⁰ + 0*2¹ + 1*2² = 5₁₀
28₁₀ = 0*2⁰ + 0*2¹ + 1*2² + 1*2³ + 1*2⁴ = 11100₂
1110₂ * 11₂ = = 101010₂
1110₂ = 0*2⁰ + 1*2¹ + 1*2² + 1*2³ = 14₁₀
11₂ = 1*2⁰ + 1*2¹ = 3₁₀
42₁₀ = 0*2⁰ + 1*2¹ + 0*2² + 1*2³ + 0*2⁴ + 1*2⁵ = 101010₂
5.
1234₅ = 4*5⁰ + 3*5¹ + 2*5² + 1*5³ = 194₁₀