Предмет: Алгебра,
автор: lvan77krychkov
какое наибольшее количество чисел можно выбрать среди натуральных чисел, не превосходящих 100, так, чтобы ни сумма, ни произведение никаких двух различных выбранных чисел не делились на 100?
Ответы
Автор ответа:
1
Ответ:
90 чисел.
Объяснение:
Нам подходят все натуральные числа ≤ 100.
Рассмотрим сумму двух чисел.
Заметим, что 0 нацело делится на 100.
Любая сумма чисел этого числа будет ≤18, но при этом сумма чисел этого числа всегда будет больше нуля. Поскольку 0 не является натуральным числом в математике.
Теперь рассмотрим произведение двух чисел этого числа.
где:
a принимает значения — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
b принимает значения — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Заметим, что a ≠ 0, поскольку число не может начинаться с нуля.
Рассмотрим, если b = 0, то таких чисел:
То есть, вот эти числа: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
Всего, подходящих нам чисел: 100 - 10 = 90 чисел.
AlekseyPrj:
Не за что, спасибо тебе!!!!! Удачи!!!!!
Похожие вопросы
Предмет: Информатика,
автор: boyexanor
Предмет: Алгебра,
автор: dg4571318
Предмет: Алгебра,
автор: dima778899
Предмет: История,
автор: 04012006настя
Предмет: Алгебра,
автор: Ненигер