Предмет: Геометрия,
автор: deb51red
В параллелограмме MNPK на продолжении диагонали MP за точкой M и P отмечены соответственно точки E и O так, что ME =PO. Докажите, что четырехугольник ENOK - параллелограмм.
deb51red:
Если можно то с рисунком
Ответы
Автор ответа:
4
L - точка пересечения диагоналей параллелограмма MNPK и эта точка делит диагонали пополам, ML = LP, NL = LK. Так как МЕ = РО, то EL = EM + ML = LP + PO = LO, то есть, точка L - середина отрезка EO. Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Т.е. ENOK - параллелограмм.
Приложения:
Автор ответа:
3
Ответ и доказательство во вложении
Приложения:
Похожие вопросы
Предмет: История,
автор: osapovalova513
Предмет: Английский язык,
автор: akmaraljalgasbaj9
Предмет: Английский язык,
автор: xusainovsuxrob84
Предмет: Математика,
автор: ulya0207