Предмет: Математика,
автор: svishchkate
Перпендикуляр опущенный із вершини прямокутника на діагональ ділить її у відношенні 1:3. Знайдіть довжину діагоналі якщо точка перетину діагоналей даного прямокутника віддалена від більшої її сторони на 3,6 см.
Ответы
Автор ответа:
26
Ответ:
14.4 см
Пошаговое объяснение:
Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.
Приймемо, що ОС=х,
тоді АС=4х.
Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х
і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.
Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.
Тоді, із прямокутного ΔCDO маємо:
OD²=CD²-OC² ⇒ OD²=51.84 - x²
Із прямокутного ΔEDO маємо:
OD²=ED²-OE² ⇒ OD²=4x² - x² ⇒ OD²=3x²
Отримуємо вираз:
51.84 - x² = 3x²
4x²=51.84
x=3.6
Тоді довжина діагоналі:
АС=4х=14.4 см
Приложения:
Похожие вопросы
Предмет: Другие предметы,
автор: konnikviktoriya
Предмет: Обществознание,
автор: timkons10
Предмет: Математика,
автор: samsonovakatya2211
Предмет: Алгебра,
автор: клубничка1233
Предмет: Литература,
автор: masha1748vertikal