Предмет: Математика,
автор: Co6a4ka24rus
Объясните, пожалуйста, как из этого получили sinx=1 и sinx=-1/2
Приложения:
Ответы
Автор ответа:
1
правая часть: косинус двойного угла
====================================
cos(2α)=cos2(α)−sin2(α)
cos(2α)= 1−2·sin2(α)
cos(2α)= 2·cos2(α)−1
===================
-cos²х+sin²х=sinx
-(1-sin²x)+sin²x=sinx
-1+sin²x+sin²x-sinx=0
2sin²x-sinx-1=0
==============
замена: sinx=t
2t²-t-1=0
D=1²-4*2*(-1)=9
√D=3
x1=(1-3)/4=-1/2
x2=1
=====
возвращаемся к замене:
sinx=1
sinx=-1/2
==========
Похожие вопросы
Предмет: Геометрия,
автор: instrumentrakitin
Предмет: Химия,
автор: andreev13qw
Предмет: Физика,
автор: sadredinovabdulaziz
Предмет: Математика,
автор: olya279
Предмет: Литература,
автор: перри5