Предмет: Математика, автор: noformatics

Помогите, пожалуйста. Назовем набор различных натуральных чисел от 1 до 9 удачным, если сумма всех чисел, входящих в него, парная. Сколько всего существует удачных наборов?


OmegaRingy: "Парная" = "чётная"?
noformatics: Да

Ответы

Автор ответа: OmegaRingy
1

Так как сумма чисел в каждом наборе должна оказаться чётной, нам нужно выяснить, сколько существует таких наборов, где нечётных чисел чётное количество.

Пусть в наборе 4 нечётных числа, тогда способов выбрать удачный набор будет:

5 (способы выбрать число, не входящее в набор) * 2⁴ (способы выбрать чётные числа для набора) = 80.

Если же в наборе два нечётных числа, то способов выбрать удачный набор будет:

(5 * 4)/2 * 2⁴ = 160.

А если нечётных чисел в наборе нет, то будет всего:

2⁴ - 1 = 15 наборов (так как один набор получится пустой).

Всего суммарно существует 80 + 160 + 15 = 255 удачных наборов.

Ответ: 255 наборов.

Похожие вопросы
Предмет: Русский язык, автор: ahmetovtimur626
Предмет: Математика, автор: Алина24321астана