Предмет: Математика, автор: КиСа009

В равнобокую трапецию вписан круг радиуса r. Боковая сторона трапеции составляет с меньшим основанием угол а. Найдите радиус круга, описанного возле трапеции.

Ответы

Автор ответа: ArtemCoolAc
2

1. Чтобы найти радиус описанной около трапеции окружности, заметим, что эта окружность описана ещё и около треугольника ABC, из теоремы синусов $\frac{AC}{sin\alpha}=2R

Надо найти AC.

Это можно сделать через теорему косинусов в треугольнике ABC.

Но для этого надо знать AB=a (боковая сторона трапеции) и BC=b (меньшее основание)

Нам же известен угол и радиус вписанной окружности.

Известный факт, что в трапецию если можно вписать окружность, то сумма противоположных сторон равна. a+a=b+c (c- большее основание).

2a=b+c;

$a=\sqrt{h^2+(\frac{c-b}{2}^2 )} ; b+c=2\sqrt{h^2+(\frac{c-b}{2}^2 )}; h=\sqrt{(\frac{c+b}{2} )^2-(\frac{c-b}{2} )^2} ;

$h=\frac{1}{2} \sqrt{(c+b)^2-(c-b)^2}; h=\sqrt{bc}

$r=\frac{h}{2} =\frac{\sqrt{bc} }{2}

bc=4r^2

Далее из треугольника CHD ∠CDH=180-α;

sin(180-\alpha)=sin\alpha

$sin\alpha=\frac{h}{a}= \frac{2r}{a} \Rightarrow a=\frac{2r}{sin\alpha}

Далее имеем систему с неизвестными b и c:

$\left \{ {{b+c=2a=\frac{4r}{sin\alpha } } \atop {bc=4r^2}} \right.;

Из 2-го уравнения имеем $c=\frac{4r^2}{b}

Подставляем в 1-е и получаем:

$b+\frac{4r^2}{b}=\frac{4r}{sin\alpha }  ; b>0 \Rightarrow b^2-\frac{4r}{sin\alpha } b+4r^2=0

Это квадратное уравнение относительно b:

$D_1=\frac{4r^2}{sin^2\alpha } -4r^2=4r^2(\frac{1}{sin^2\alpha }-1)=4r^2(\frac{1-sin^2\alpha }{sin^2\alpha } ) =4r^2\frac{cos^2\alpha }{sin^2\alpha }

Все величины положительны, поэтому модули (\sqrt{a^2}=|a|) раскрываются с "+".

$b=\frac{2r}{sin\alpha } \pm\frac{2rcos\alpha }{sin\alpha } =\frac{2r}{sin\alpha } (1\pm cos\alpha )

Не понятно пока, оставлять ли оба значения или брать одно, Попробуем вычислить с:

$c=\frac{4r}{sin\alpha } -b=\frac{4r}{sin\alpha}-\frac{2r}{sin\alpha } (1\pm cos\alpha )=\frac{2r}{sin\alpha } (2-1\mp cos\alpha )

$c=\frac{2r}{sin\alpha } (1\mp cos\alpha )

Надо учесть, что b<c. Всё будет зависеть от знаков, которые мы берем.

Чтобы с было больше b, c с "+", b с "-".

$b=\frac{2r}{sin\alpha } (1-cos\alpha )

Но нам c толком и не надо. Только b

Теперь запишем теорему косинусов (AC=d):

d^2=a^2+b^2-2\cdot a\cdot b\cdot cos\alpha;

$d^2=(\frac{2r}{sin\alpha } )^2 +(\frac{2r}{sin\alpha } )^2(1-cos\alpha )^2=(\frac{2r}{sin\alpha } )^2(1+(1-cos\alpha )^2)

$d=\frac{2r}{sin\alpha } \sqrt{1+(1-cos\alpha)^2 }

Вспоминаем $\frac{AC}{sin\alpha } =2R; R=\frac{d}{2sin\alpha }

$R=\frac{r}{sin^2\alpha } \sqrt{1+(1-cos\alpha)^2 }

Дальше я не вижу смысла преобразовывать тригонометрию, там вроде ничего путного не выходит.

Ответ: $\boxed{R=\frac{r}{sin^2\alpha } \sqrt{1+(1-cos\alpha)^2 }}

Приложения:
Похожие вопросы
Предмет: Математика, автор: poddubnayyu
Предмет: Алгебра, автор: умник988