Есть 58 шоколадок и 64 леденца. Сколько одинкаовых подарков можно сделать из 58 шоколадок и 64 леденцов, так чтобы в каждом подарке было одинаковое кол-во шоколадок и леденцов?
Ответы
Ответ:
2 подарка.
Пошаговое объяснение:
58 шоколадок и 64 леденца должны делиться поровну на число подарков n, тогда n - общий делитель чесел 58 и 64.
58 = 2•29;
64 = 2•2•2•2•2•2;
Общими делителями являются числа 1 и 2.
Если по смыслу задачи одинаковых подарков несколько, то их может быть только 2.
Это задача, как правило, - на нахождение наибольшего общего делителя чисел 58 и 64. По алгоритму Евклида НОД данных чисел равен двум, т.к.
НОД(58;64)=НОД(58;64-58)=НОД(58;6)=
НОД(58-6;6)=НОД(52;6)=НОД(52-6;6)=НОД(46;6)=
НОД(46-6;6)=НОД(40;6)=НОД(40-6;6)=НОД(34;6)=
=НОД(34-6;6)=НОД(28;6)=НОД(28-6;6)=НОД(22;6)=
НОД(22-6;6)=НОД(16;6)=НОД(16-6;6)=НОД(10;6)=
НОД(10-6;6)=НОД(4;6)=НОД(4;6-4)=
НОД(4;2)=НОД(4-2;2)=НОД(2;2)=2. Можно сделать два одинаковых подарка, в которых будет по 58/2=29 (шоколадок) и 64/2=32 /леденца./
В задаче надо было найти возможное количество подарков. Меньше НОД, я бы еще указал другие варианты, но в данной задаче, кроме двойки, числа 58 и 64 делятся еще только на единицу.
Ответ 1 или 2.