Предмет: Математика,
автор: haykkarapetyan2005
Докажите, что число p^2-1 делится на 24 если p простое число больше 3
Ответы
Автор ответа:
0
Предположим, что . Тогда и . Проверим последнее утверждение.
Данное произведение — это произведение трёх последовательных чисел, значит, один из множителей обязательно делится на 3. Так как p простое и больше 3, p-1 и p+1 чётны. Докажем, что произведение p-1 = 2k и p+1 = 2k+2 (k ∈ N) делится на 8:
. Оно, очевидно, делится на 4. Также оно делится ещё на 2, так как одно из чисел k и k+1 обязательно чётное.
.
Однако из этого не обязательно следует, что и . Но p > 3 и p — простое, значит, p не содержит множителей числа 24, то есть на 24 может делиться только , что и требовалось доказать.
Похожие вопросы
Предмет: История,
автор: sabinaumargazieva
Предмет: Алгебра,
автор: BANDIT8232
Предмет: Математика,
автор: OlEg5791
Предмет: Литература,
автор: nadiyamovchan
Предмет: Литература,
автор: Аноним