Предмет: Геометрия, автор: 1EXCLUSIVE1

Кому не трудно.
Дано:
ABCD - прямоугольник
AE=BF
Доказать:
А) DG=GC
Б) GF=GE

Приложения:

Ответы

Автор ответа: artalex74
1

Рисунок - во вложении.

Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то

для EB=AB-AE и для AF=AB-BF следует, что EB=AF.

Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.

Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).

Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).

Приложения:
Похожие вопросы