Предмет: Алгебра, автор: qwe892137

Помогите решить с объяснением пожалуйста.

Приложения:

Ответы

Автор ответа: artalex74
2

1.\ \sin10^o+\cos20^o=\cos80^o+\cos20^o=2cos50^ocos30^o=2cos50^o\cdot\frac{\sqrt{3} }{2} =\\ =\sqrt{3} cos50^o=\sqrt{3} sin40^o

2.\ \sin20^o+\cos10^o=\cos70^o+\cos10^o=2cos40^ocos30^o=2cos40^o\cdot\frac{\sqrt{3} }{2} =\\ =\sqrt{3} cos40^o=\sqrt{3} sin50^o

3.\ \cos20^o-\sin10^o=\cos20^o-\cos80^o=2sin50^osin30^o=2sin50^o\cdot\frac{1}{2} =sin50^o

4.\ \cos10^o-\sin20^o=\cos10^o-\cos70^o=2sin40^osin30^o=2sin40^o\cdot\frac{1}{2} =sin40^o

Итак, соответствия:

1 - В;  2 - Г;  3 - А;  4 - Б.

Ответ: 1 - В;  2 - Г;  3 - А;  4 - Б.

Приложения:
Похожие вопросы
Предмет: Математика, автор: tanyashulunova89
Найдите один неправильный ответ, а в случае его отсутствия

укажите: «Неправильного ответа нет».



А 1. Существенными признаками понятия «арифметическая задача» является наличие в тексте:

1) условия; 2) вопроса; 3) числовых данных;

4) реального сюжета; 5) взаимосвязи между условием и вопросом;

6) неправильного ответа нет.



А 2. В начальном обучении арифметические задачи выполняют следующие функции:

1) развитие разных видов мышления;

2) ознакомление с некоторыми математическими понятиями и закономерностями;

3) подготовка к жизни, в том числе к продолжению образования;

4) заучивание способов решения типовых задач;

5) воспитание некоторых качеств личности;

6) неправильного ответа нет.



А 3. На этапе ознакомления с арифметической задачей и ее структурой тексты задач полезно сравнивать с:

1) загадками;

2) короткими рассказами, где встречаются имена числительные или слово «сколько»;

3) математическими рассказами, где некоторая ситуация полностью описана на математическом языке;

4) задачами-шутками;

5) другими арифметическими задачами;

6) неправильного ответа нет.



А 4. Решить арифметическую задачу – это значит:

1) объяснить, какие действия и почему надо выполнить, чтобы найти требуемое в задаче;

2) вычислить;

3) сопоставить смысл полученного числа с требованием задачи;

4) проверить вычисления; 5) ответить на вопрос задачи;

6) неправильного ответа нет.




А 5. Решение любой арифметической задачи ведется по одному и тому же плану:

1) подготовительная работа;

2) восприятие и осмысление содержания задачи;

3) поиск и составление плана решения;

4) выполнение решения и ответ на вопрос задачи;

5) проверка;

6) работа над решенной задачей (творческая работа).



А 6. Обучение решению задач осуществляется поэтапно:

1) подготовительная работа;

2) работа по разъяснению текста задачи;

3) «открытие» арифметического способа решения задачи;

4) «взгляд назад» или рефлексия;

5) закрепление, т. е. формирование умения применять тот же способ в аналогичных задачах;

6) неправильного ответа нет.



А 7. В начальных классах арифметические задачи решаются следующими способами:

1) практическим; 2) арифметическим; 3) геометрическим;

4) алгебраическим; 5) подбора; 6) неправильного ответа нет.



А 8. Чтобы организовать на уроке решение задачи практическим способом, можно использовать:

1) полное иллюстрирование текста;

2) условно-предметное моделирование;

3) графическое моделирование;

4) краткую запись задачи;

5) неправильного ответа нет.



А 9. Чтобы «открыть» вместе с детьми арифметический способ решения задачи, можно:

1) полностью отказаться от наглядной интерпретации задачи;

2) проиллюстрировать только сюжет;

3) записать задачу кратко;

4) использовать предметное моделирование лишь части условия;

5) выполнить полное предметное моделирование текста задачи;

6) неправильного ответа нет.



А 10. В процессе обучения решению простых задач у учащихся формируются следующие общие умения:

1) выразительно читать; 2) выделять условие и вопрос;

3) обоснованно выбирать арифметическое действие, соответствующее описанной в тексте взаимосвязи между данными и искомым;

4) использовать для выбора арифметического действия и обоснования его правильности различные виды моделей;

5) оформлять запись решения; 6) применять способы проверки.
Предмет: Английский язык, автор: faizulinmarat403