Предмет: Геометрия,
автор: oleg1995
треугольник со сторонами 3см, 4см, 5 см согнули по его средним линиям и получили модель тетраэдра.Найдите площади граней полученной модели?
Ответы
Автор ответа:
0
Допустим, что дан треугольник АВС -
СВ = 3 см - XZ-средняя линия
АВ = 4 см - УZ-средняя линия
СА = 5 см- XУ-средняя линия
Cредняя линия равна половине основания
XZ=СВ/2=3/2=1.5см
УZ= АВ/2=4/2=2см
XУ=СА/2= 5/2=2.5см
Средняя линия в точках пересечения со сторонам делит их пополам т.е:
СУ=УВ=СВ/2=1.5см
АХ=ХВ=АВ/2=2см
СZ=ZA=СА/2=2.5см
Как мы видим из вычислений и рисунка все 4 маленьких треугольника равны по трем сторонам (это третий признак равенства)
Мы знаем все стороны маленьких треугольников, значит, по формуле Герона мы можем найти площадь:
p- полупериметр, a,b,c- стороны
Мы нашли площадь одного маленького треугольника , а он в тетраэдре является гранью. Т.к мы доказали, что маленькие треугольники равны, то площади граней тоже равны
СВ = 3 см - XZ-средняя линия
АВ = 4 см - УZ-средняя линия
СА = 5 см- XУ-средняя линия
Cредняя линия равна половине основания
XZ=СВ/2=3/2=1.5см
УZ= АВ/2=4/2=2см
XУ=СА/2= 5/2=2.5см
Средняя линия в точках пересечения со сторонам делит их пополам т.е:
СУ=УВ=СВ/2=1.5см
АХ=ХВ=АВ/2=2см
СZ=ZA=СА/2=2.5см
Как мы видим из вычислений и рисунка все 4 маленьких треугольника равны по трем сторонам (это третий признак равенства)
Мы знаем все стороны маленьких треугольников, значит, по формуле Герона мы можем найти площадь:
p- полупериметр, a,b,c- стороны
Мы нашли площадь одного маленького треугольника , а он в тетраэдре является гранью. Т.к мы доказали, что маленькие треугольники равны, то площади граней тоже равны
Приложения:
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Химия,
автор: tanyrus79
Предмет: Геометрия,
автор: fruitgol410
Предмет: Геометрия,
автор: serega2201
Предмет: Геометрия,
автор: serega2201