Предмет: Физика, автор: dagmaii1

Из города с интервалом в 4 мин в одном направлении выехали два велосипедиста с одинаковой скоростью, равной 15 км/ч. Определите скорость туриста, который шел им навстречу, если он встретил велосипедистов с интервалом в 3 мин.

Ответы

Автор ответа: nikebod313
4

Дано:

v_{1} = v_{2} = 15 км/ч

\tau = 4 мин

t = 3 мин

Найти: v_{3} - ?

Решение. Расстояние между велосипедистами s = v_{1}\tau. Выберем систему отсчета "Велосипедист 1", начало отсчета времени — момент его встречи с туристом. Скорость туриста в этой системе отсчета согласно с формулой сложения скоростей v_{31} = v_{3} + v_{1}. Теперь он преодолеет расстояние s между неподвижными велосипедистами за время t:

t = \dfrac{s}{v_{31}} = \dfrac{v_{1}\tau}{v_{3} + v_{1}}

Отсюда v_{3} = v_{1}\bigg(\dfrac{\tau}{t} - 1 \bigg)

Определим значение искомой величины:

v_{3} = 15 \cdot \bigg(\dfrac{4}{3} - 1 \bigg) = 5 км/ч

Ответ: 5 км/ч

Похожие вопросы
Предмет: Математика, автор: kukyska
Предмет: Алгебра, автор: Belimon