Предмет: Геометрия,
автор: mark25032005
ПОМОГИТЕ РЕШИТЬ!!!!
Центр кола, вписаного у рівнобедрений трикутник, ділить його висоту, проведену до основи, на відрізки, довжини яких дорівнюютьь 10 см і 26 см. Знайдіть площу даного трикутника
Ответы
Автор ответа:
15
Стороны треугольника являются касательными к окружности.
Касательная перпендикулярна радиусу, проведенному в точку касания.
ОК⊥АВ
OL⊥AC
Высота равнобедренного треугольника, проведённая к основанию, одновременно и медиана и биссектриса.
AL=LC
ОК=ОL=10 см
BO=26 см
По теореме Пифагора
BK²=BO²-OK²=26²-10²=676-100=576
BK=24 см
Пусть AK=x
По свойству касательных, проведенных к окружности из одной точки
AK=AL=x
По теореме Пифагора из прямоугольного треугольника АВL:
AB²-AL²=BL²
(24+x)²-x²=(10+26)²
24²+48x+x²-x²=36²
48x=720
x=15
AC=2AL=30 см
S(Δ ABC)=(1/2)AC·BL=(1/2)·30·36=540 кв см.
Приложения:
Похожие вопросы
Предмет: Українська мова,
автор: owdeoon
Предмет: Геометрия,
автор: skeletonchiks
Предмет: История,
автор: rp8533203
Предмет: Математика,
автор: lina10112005
Предмет: Математика,
автор: RostislavPro