Предмет: Геометрия,
автор: skrukov
На сторонах AB, BC и AD квадрата ABCD выбраны точки M, K, L соответственно так, что AL=BM=BK. Отрезки KL и CM пересекаются в точке N. Выберите 4 точки, являющиеся вершинами треугольника и его ортоцентром соответственно.
Приложения:
Ответы
Автор ответа:
14
H - точка пересечения BL и CM.
AD||BC, AL=BK => ABKL - параллелограмм, AB||LK, AB=LK
AB⊥BC => LK⊥BC, ∠LKB=90
AB=BC => LK=BC
△MCB=△BLK (по двум катетам), ∠MCB=∠BLK
△BCH~△BLK (по двум углам, ∠LBC - общий), ∠CHB=∠LKB=90
Треугольник LBC, LK и CH - высоты, N - ортоцентр (точка пересечения высот, высоты треугольника пересекаются в одной точке).
Приложения:
Похожие вопросы
Предмет: История,
автор: vzavgirodna
Предмет: Українська мова,
автор: kapusta4324
Предмет: Английский язык,
автор: vikalisiuk2005
Предмет: Геометрия,
автор: maksimka228228