Предмет: Геометрия,
автор: rom1an
Через сторону нижнего основания и противолежащую вершину верхнего основания правильной треугольной призмы проведена плоскость, образующая с плоскостью основания угол 60 градусов. Площадь образовавшегося сечения равна 8√3 см2 . Найдите объем призмы.
Ответы
Автор ответа:
11
Обозначим сторону основания а, высоту призмы Н, высоту сечения h.
Проекция высоты сечения h на основание - это высота основания СD.
CD = a√3/2. Тогда высота призмы как катет, лежащий против угла 60 градусов, равна (a√3/2)*tg 60° = (a√3/2)*√3 = 3a/2.
Теперь определим высоту сечения h.
h = CD/cos 60° = (a√3/2)/(1/2) = a√3.
Площадь сечения как треугольника равна:
S(AC1B) = (1/2)a*h = (1/2)a*(a√3) = a²√3/2.
Приравняем заданному значению: a²√3/2 = 8√3, a² = 16, a = 4.
Можно получить ответ:
V = SoH = (a²√3/4)*(3a/2) = 3a³√3/8 = 3*64*√3/8 = 24√3 см³.
Приложения:
rom1an:
все верно
Похожие вопросы
Предмет: Математика,
автор: lipovera512
Предмет: Алгебра,
автор: agataharris6
Предмет: Математика,
автор: alidilnaz16
Предмет: История,
автор: Chuzll
Предмет: Математика,
автор: саша842